IT之家 12 月 1 日消息,在湖南师范大学信息科学与工程学院教授毕夏安的带领下,脑科学与人工智能团队创新尝试,开发出可诊断阿尔茨海默病(AD,又称老年痴呆症)的 AI 算法。
用于疾病分类与风险预测的深度学习算法技术框架。
该团队深入分析大脑影像和基因数据,将其作为 AD 的宏观视图与微观视图,提出一种用于疾病分类与风险预测的深度学习算法,可精准生成大脑功能网络视图。
该算法应用到 AD 的大量实验显示,多阶段诊断和风险预测准确率分别达 74.2% 和 84.5%,这比当前已有先进诊断方法平均高出 10 个百分点。
图源:青岛市急救中心
该研究成果于 11 月 6 日发表于 IEEE TPAMI 上,毕夏安为第一作者和通讯作者,美国佐治亚大学教授刘天明为共同通讯作者,哈佛大学医学院和麻省总医院助理教授李响等参与研究,湖南师范大学为论文第一单位及通讯单位。
在生物医学领域,AD 被定义为由多种复杂因素共同导致的脑退行性疾玻目前研究人员已开发出多种检测技术以帮助临床工作者了解病情,比如磁共振、PET 等医学影像检查手段。
毕夏安解释:
我们在阿尔茨海默病神经影像学计划 (ADNI) 数据库中,提取了 197 个早期轻度认知功能障碍、203 个晚期轻度认知功能障碍和 233 个阿尔茨海默症患者的数据信息做验证,取得了可喜结果。
目前抽血做全基因组测试,是可能判断早期阿尔茨海默症和风险的,但并不知道基因如何刻画大脑功能的改变,且大脑改变是不可视的。基于团队算法,个体基因数据可直接映射出对应的脑网络。
IT之家附上论文参考地址:X. -a. Biet al., "Structure Mapping Generative Adversarial Network for Multi-view Information Mapping Pattern Mining," inIEEE Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/TPAMI.2023.3330795.