linux查看cpu使用率-手把手教你定位常见Java性能问题

生活百科1年前 (2023)发布 aixure
78 0 0

这里已经指出了内存被线程占用了接近50M的内存,占用的对象就是ThreadLocal。如果想详细的通过手动去分析的话,可以点击Histogram,查看最大的对象占用是谁,然后再分析它的引用关系linux查看cpu使用率,即可确定是谁导致的内存溢出。

linux查看cpu使用率-手把手教你定位常见Java性能问题

上图发现占用内存最大的对象是一个Byte数组,我们看看它到底被那个GC Root引用导致没有被回收。按照上图红框操作指引,结果如下图:

我们发现Byte数组是被线程对象引用的,图中也标明,Byte数组对像的GC Root是线程,所以它是不会被回收的,展开详细信息查看,我们发现最终的内存占用对象是被ThreadLocal对象占据了。这也和MAT工具自动帮我们分析的结果一致。

死锁

死锁会导致耗尽线程资源,占用内存,表现就是内存占用升高,CPU不一定会飙升(看场景决定),如果是直接new线程,会导致JVM内存被耗尽,报无法创建线程的错误,这也是体现了使用线程池的好处。

 ExecutorService service = new ThreadPoolExecutor(4, 10,
            0, TimeUnit.SECONDS, new LinkedBlockingQueue(1024),
            Executors.defaultThreadFactory(),
            new ThreadPoolExecutor.AbortPolicy());
   /**
     * 模拟死锁
     */
    @GetMapping("/cpu/test")
    public String testCPU() throws InterruptedException {
        System.out.println("请求cpu");
        Object lock1 = new Object();
        Object lock2 = new Object();
        service.submit(new DeadLockThread(lock1, lock2), "deadLookThread-" + new Random().nextInt());
        service.submit(new DeadLockThread(lock2, lock1), "deadLookThread-" + new Random().nextInt());
        return "ok";
    }
public class DeadLockThread implements Runnable {
    private Object lock1;
    private Object lock2;
    public DeadLockThread1(Object lock1, Object lock2) {
        this.lock1 = lock1;
        this.lock2 = lock2;
    }
    @Override
    public void run() {
        synchronized (lock2) {
            System.out.println(Thread.currentThread().getName()+"get lock2 and wait lock1");
            try {
                TimeUnit.MILLISECONDS.sleep(2000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            synchronized (lock1) {
                System.out.println(Thread.currentThread().getName()+"get lock1 and lock2 ");
            }
        }
    }
}

我们循环请求接口2000次,发现不一会系统就出现了日志错误,线程池和队列都满了,由于我选择的当队列满了就拒绝的策略,所以系统直接抛出异常。

java.util.concurrent.RejectedExecutionException: Task java.util.concurrent.FutureTask@2760298 rejected from java.util.concurrent.ThreadPoolExecutor@7ea7cd51[Running, pool size = 10, active threads = 10, queued tasks = 1024, completed tasks = 846]

通过ps -ef|grep java命令找出 Java 进程 pid,执行jstack pid 即可出现java线程堆栈信息,这里发现了5个死锁,我们只列出其中一个,很明显线程pool-1-thread-2锁住了0x00000000f8387d88等待0x00000000f8387d98锁,线程pool-1-thread-1锁住了0x00000000f8387d98等待锁0x00000000f8387d88,这就产生了死锁。

Java stack information for the threads listed above:
===================================================
"pool-1-thread-2":
        at top.luozhou.analysisdemo.controller.DeadLockThread2.run(DeadLockThread.java:30)
        - waiting to lock  (a java.lang.Object)
        - locked  (a java.lang.Object)
        at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
        at java.util.concurrent.FutureTask.run(FutureTask.java:266)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748)
"pool-1-thread-1":
        at top.luozhou.analysisdemo.controller.DeadLockThread1.run(DeadLockThread.java:30)
        - waiting to lock  (a java.lang.Object)
        - locked  (a java.lang.Object)
        at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
        at java.util.concurrent.FutureTask.run(FutureTask.java:266)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748)
          
 Found 5 deadlocks.

线程频繁切换

上下文切换会导致将大量CPU时间浪费在寄存器、内核栈以及虚拟内存的保存和恢复上,导致系统整体性能下降。当你发现系统的性能出现明显的下降时候,需要考虑是否发生了大量的线程上下文切换。

 @GetMapping(value = "/thread/swap")
    public String theadSwap(int num) {
        System.out.println("模拟线程切换");
        for (int i = 0; i < num; i++) {
            new Thread(new ThreadSwap1(new AtomicInteger(0)),"thread-swap"+i).start();
        }
        return "ok";
    }
public class ThreadSwap1 implements Runnable {
    private AtomicInteger integer;
    public ThreadSwap1(AtomicInteger integer) {
        this.integer = integer;
    }
    @Override
    public void run() {
        while (true) {
            integer.addAndGet(1);
            Thread.yield(); //让出CPU资源
        }
    }
}

这里我创建多个线程去执行基础的原子+1操作,然后让出 CPU 资源,理论上 CPU 就会去调度别的线程,我们请求接口创建100个线程看看效果如何,curl localhost:8080/thread/swap?num=100。接口请求成功后,我们执行`vmstat 1 10,表示每1秒打印一次,打印10次,线程切换采集结果如下:

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
101  0 128000 878384    908 468684    0    0     0     0 4071 8110498 14 86  0  0  0
100  0 128000 878384    908 468684    0    0     0     0 4065 8312463 15 85  0  0  0
100  0 128000 878384    908 468684    0    0     0     0 4107 8207718 14 87  0  0  0
100  0 128000 878384    908 468684    0    0     0     0 4083 8410174 14 86  0  0  0
100  0 128000 878384    908 468684    0    0     0     0 4083 8264377 14 86  0  0  0
100  0 128000 878384    908 468688    0    0     0   108 4182 8346826 14 86  0  0  0

这里我们关注4个指标,r,cs,us,sy。

r=100,说明等待的进程数量是100,线程有阻塞。

cs=800多万,说明每秒上下文切换了800多万次,这个数字相当大了。

us=14,说明用户态占用了14%的CPU时间片去处理逻辑。

sy=86,说明内核态占用了86%的CPU,这里明显就是做上下文切换工作了。

我们通过top命令以及top -Hp pid查看进程和线程CPU情况,发现Java线程CPU占满了,但是线程CPU使用情况很平均,没有某一个线程把CPU吃满的情况。

PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
 87093 root      20   0 4194788 299056  13252 S 399.7 16.1  65:34.67 java
 PID USER      PR  NI    VIRT    RES    SHR S %CPU %MEM     TIME+ COMMAND
 87189 root      20   0 4194788 299056  13252 R  4.7 16.1   0:41.11 java
 87129 root      20   0 4194788 299056  13252 R  4.3 16.1   0:41.14 java
 87130 root      20   0 4194788 299056  13252 R  4.3 16.1   0:40.51 java
 87133 root      20   0 4194788 299056  13252 R  4.3 16.1   0:40.59 java
 87134 root      20   0 4194788 299056  13252 R  4.3 16.1   0:40.95 java

结合上面用户态CPU只使用了14%linux查看cpu使用率,内核态CPU占用了86%,可以基本判断是Java程序线程上下文切换导致性能问题。

我们使用pidstat命令来看看Java进程内部的线程切换数据,执行pidstat -p 87093 -w 1 10,采集数据如下:

11:04:30 PM   UID       TGID       TID   cswch/s nvcswch/s  Command
11:04:30 PM     0         -     87128      0.00     16.07  |__java
11:04:30 PM     0         -     87129      0.00     15.60  |__java
11:04:30 PM     0         -     87130      0.00     15.54  |__java
11:04:30 PM     0         -     87131      0.00     15.60  |__java
11:04:30 PM     0         -     87132      0.00     15.43  |__java
11:04:30 PM     0         -     87133      0.00     16.02  |__java
11:04:30 PM     0         -     87134      0.00     15.66  |__java
11:04:30 PM     0         -     87135      0.00     15.23  |__java
11:04:30 PM     0         -     87136      0.00     15.33  |__java
11:04:30 PM     0         -     87137      0.00     16.04  |__java

根据上面采集的信息,我们知道Java的线程每秒切换15次左右,正常情况下,应该是个位数或者小数。结合这些信息我们可以断定Java线程开启过多,导致频繁上下文切换,从而影响了整体性能。

为什么系统的上下文切换是每秒800多万,而 Java 进程中的某一个线程切换才15次左右?

系统上下文切换分为三种情况:

1、多任务:在多任务环境中,一个进程被切换出CPU,运行另外一个进程,这里会发生上下文切换。

2、中断处理:发生中断时,硬件会切换上下文。在vmstat命令中是in

3、用户和内核模式切换:当操作系统中需要在用户模式和内核模式之间进行转换时,需要进行上下文切换,比如进行系统函数调用。

Linux 为每个 CPU 维护了一个就绪队列,将活跃进程按照优先级和等待 CPU 的时间排序,然后选择最需要 CPU 的进程,也就是优先级最高和等待 CPU 时间最长的进程来运行。也就是vmstat命令中的r。

那么,进程在什么时候才会被调度到 CPU 上运行呢?

结合我们之前的内容分析,阻塞的就绪队列是100左右,而我们的CPU只有4核,这部分原因造成的上下文切换就可能会相当高,再加上中断次数是4000左右和系统的函数调用等,整个系统的上下文切换到800万也不足为奇了。Java内部的线程切换才15次,是因为线程使用Thread.yield()来让出CPU资源,但是CPU有可能继续调度该线程,这个时候线程之间并没有切换,这也是为什么内部的某个线程切换次数并不是非常大的原因。

总结

本文模拟了常见的性能问题场景,分析了如何定位CPU100%、内存泄漏、死锁、线程频繁切换问题。分析问题我们需要做好两件事:

掌握基本的原理借助好工具。

本文也列举了分析问题的常用工具和命令,希望对你解决问题有所帮助。当然真正的线上环境可能十分复杂,并没有模拟的环境那么简单,但是原理是一样的,问题的表现也是类似的,我们重点抓住原理,活学活用,相信复杂的线上问题也可以顺利解决。

参考

限时特惠:本站每日持续更新海量各大内部网赚创业教程,会员可以下载全站资源点击查看详情
站长微信:

© 版权声明

相关文章

暂无评论

暂无评论...