今天,我们来教AI下国际象棋

人工智能应用1年前 (2023)发布 aixure
71 0 0
导读:选自medium 作者:Ansh Gaikwad 机器之心编译 编辑:陈萍 国际象棋是一种在棋盘上玩的双人战略棋盘游戏,棋盘格式为 64 格,排列在 88 网格中。有人无聊的时候会找电脑下国际象棋,但也有人无聊了会教电脑下棋。 国际象棋可以说是最棒的棋盘游戏之一,它是战…

选自medium

作者:Ansh Gaikwad

机器之心编译

编辑:陈萍

国际象棋是一种在棋盘上玩的双人战略棋盘游戏,棋盘格式为 64 格,排列在 8×8 网格中。有人无聊的时候会找电脑下国际象棋,但也有人无聊了会教电脑下棋。

国际象棋可以说是最棒的棋盘游戏之一,它是战略战术和纯技术的完美融合。每位玩家开局时各有 16 枚棋子:一王、一后、两车、两马、两象和八兵,各具不同功能与走法。真人对弈可以凭借玩家的经验,步步为营。那么,对于一个机器计算机,你该如何教会它下棋?近日,有人在 medium 上发表了一篇文章,详细解释了如何教计算机玩国际象棋。

本文将从 5 个方面进行介绍:

Board 表示;

Board 评估;

移动选择;

测试 AI;

接口测试。

在开始之前,你只需要提前安装 Python3。

Board 表示

首先,你需要对棋子背后的逻辑进行编码,即为每个棋子分配每一次可能的合法移动。

python-chess 库为我们提供了棋子的移动生成和验证,简化了工作,安装方式如下:

python-chess 库安装好后,导入 chess 模块并进行初始化:

在 notebook 中的输出如下所示:

board 对象是一个完整的 board 表示,该对象为我们提供了一些重要的函数,例如,board.is_checkmate() 函数检查是否存在将杀(checkmate),board.push() 函数附加一个移动,board.pop() 函数撤销最后一次移动等。阅读完整的文档请参阅:https://python-chess.readthedocs.io/en/latest/

Board 评估

为了对 board 进行初步评估,必须考虑一位大师在各自比赛中的想法。

我们应该想到的一些要点是:

避免用一个小棋子换三个兵;

象总是成对出现;

避免用两个小棋子换一辆车和一个兵。

将上述要点以方程形式进行表达:

象 > 3 个兵 & 马 > 3 个兵;

象 > 马;

象 + 马 > 车 + 兵。

通过化简上述方程,可以得到:象 > 马 > 3 个兵。同样,第三个方程可以改写成:象 + 马 = 车 + 1.5 个兵,因为两个小棋子相当于一个车和两个兵。

使用 piece square table 来评估棋子,在 8×8 的矩阵中设置值,例如在国际象棋中,在有利的位置设置较高的值,在不利的位置设置较低的值。

例如,白色国王越过中线的概率将小于 20%,因此我们将在该矩阵中将数值设置为负值。

再举一个例子,假设皇后希望自己被放在中间位置,因为这样可以控制更多的位置,因此我们将在中心设置更高的值,其他棋子也一样,因为国际象棋都是为了保卫国王和控制中心。

理论就讲这些,现在我们来初始化 piece square table:

通过以下四种方法得到评估函数:

第一步检查游戏是否还在继续。

这个阶段的背后编码逻辑是:如果它在 checkmate 时返回 true,程序将会检查轮到哪方移动。如果当前轮到白方移动,返回值为 – 9999,即上次一定是黑方移动,黑色获胜;否则返回值为 + 9999,表示白色获胜。对于僵局或比赛材料不足,返回值为 0 以表示平局。

代码实现方式:

第二步,计算总的棋子数,并把棋子总数传递给 material 函数。

第三步,计算得分。material 函数得分的计算方法是:用各种棋子的权重乘以该棋子黑白两方个数之差,然后求这些结果之和。而每种棋子的得分计算方法是:该棋子在该游戏实例中所处位置的 piece-square 值的总和。

第四步,计算评价函数,此时将会返回白棋的 material 得分和各棋子单独得分之和。

评价函数流程图

移动选择

算法的最后一步是用 Minimax 算法中的 Negamax 实现进行移动选择,Minimax 算法是双人游戏(如跳棋等)中的常用算法。之后使用 Alpha-Beta 剪枝进行优化,这样可以减少执行的时间。

现在让我们深入研究一下 minimax 算法。该算法被广泛应用在棋类游戏中,用来找出失败的最大可能性中的最小值。该算法广泛应用于人工智能、决策论、博弈论、统计和哲学,力图在最坏的情况下将损失降到最低。简单来说,在游戏的每一步,假设玩家 A 试图最大化获胜几率,而在下一步中,玩家 B 试图最小化玩家 A 获胜的几率。

为了更好地理解 minimax 算法,请看下图:

维基百科中 minimax 树举例

为了得到更好的结果,使用 minimax 变体 negamax,因为我们只需要一个最大化两位玩家效用的函数。不同点在于,一个玩家的损失等于另一个玩家的收获,反之亦然。

就游戏而言,给第一个玩家的位置值和给第二个玩家的位置值符号是相反的。

negamax 示例

首先,我们将 alpha 设为负无穷大,beta 设为正无穷大,这样两位玩家都能以尽可能差的分数开始比赛,代码如下:

下面让我们以流程图的方式来解释:

search 函数的流程图

下一步是进行 alpha-beta 的剪枝来优化执行速度。

来自维基百科的 alpha-beta 剪枝说明

代码如下:

现在,让我们用下面给出的流程图来调整 alphabeta 函数:

现在是静态搜索,这种搜索旨在仅评估静态位置,即不存在致胜战术移动的位置。该搜索需要避免由搜索算法的深度限制所引起的水平线效应(horizon effect)。

代码如下:

简单总结一下 quiesce 函数:

quiesce 函数流程图。

测试 AI

开始测试前,需要导入一些库:

测试有 3 项:

AI 对弈人类;

AI 对弈 AI;

AI 对弈 Stockfish。

1. AI 对弈人类:

AI 选择从 g1 到 f3,这是一个很明智的选择。

2. AI 对弈 AI:

3. AI 对弈 Stockfish:

可以得出:AI 还不够智能,不足以打败 stockfish 12,但仍然坚持走了 20 步。

接口测试

上述测试方式看起来代码很多,你也可以写一个接口测试 AI。

然后执行:

最终输出

Java深度学习框架DJL综述以及推理应用

DJL是亚马逊推出的开源的深度学习开发包,它是在现有深度学习框架基础上使用原生Java概念构建的开发库。DJL目前提供了MXNet,、PyTorch和TensorFlow的实现。Java开发者可以立即开始将深度学习的SOTA成果集成到Java应用当中。

10月29日20:00,兰青(AWS算法工程师)将带来线上分享,介绍DJL以及推理应用,并通过在线demo帮助开发者更好了解DJL是如何将Java和深度学习有机结合起来的。

赞助本站

© 版权声明

相关文章

暂无评论

暂无评论...