大数据的大多数领域和消费者及营销有关,从这个角度而言,20世纪60年代至20世纪90年代初这个时间段就是一个黄金期,在这个时间段内,能控制商业媒体、大型报业集团、电视和广播频道的人有限。
现在消费者已经获得了媒体的所有权。电视观众数量减少,报纸读者数量也直线下降,如今消费者杂志的数量是20年前的两倍多,数字录象设备TIVO、宽带的问世及普及意味着消费者能够决定他们看什么,听什么、何时看、何时听。他们还能剪去电视广告。媒体的土崩瓦解意味着公众已经处于完全自主的地位,而原先媒体的所有者却无法扭转局面。
现在消费者们都握有极大的权力。这就意味着为了与消费者进行成功有效的沟通,品牌需要尽可能多地了解消费者,才能确保每一条产品信息都成功抵达消费者心灵。
在这样的情况下,数据和数据建模就很重要了。此外这还和“大数据及如何最好地使用大数据”息息相关。问题的答案是利用弱人工智能追踪消费者情绪以及从大数据中提取具体的相关信息。
弱人工智能能够做到这点是因为它具备瞬间搜索大量信息并根据上下文找出请求的特定信息以生成准确报告的能力。虽然在任何搜索中信息必须被狭隘定义,但是在狭隘定义的同时还能执行多个相关搜索的能力意味着它能提供准确模型。
监视社交媒体是跟踪几乎所有人的情绪的最好途径。目前有各种各样能提供“实时跟踪消费者评论”能力的基于弱人工智能的订阅服务。但它们很贵,且灵活性有限。
其实结论不应该从通过监视收集到的原始数据中马上得到。它们相信详细阅读并试图从更多的细节中找出模式非常重要。弱人工智能能做到这点,但不一定要通过目前的监控程序包,按要求制作的弱人工智能程序包将不可避免地出现。
在大数据方面,弱人工智能再次成为答案,因为它能使用户基于上下文有效信息创造有价值分析。对此进行说明的最好的方法之一是运用“特易购多年来面临购物卡数据相关问题”这个例子。作为英国最大零售商,特易购拥有大量的消费者购买物品的信息,但它却不知道消费者在其商店不会购买的物品。
显而易见,消费者在其它商店进行补充性购物。弱人工智能被用于推敲这一情景并找到答案。接着特易购就能通过为填补消费者购物缺口而展开相应促销、或者发放优惠券跟进。
弱人工智能还允许数据营销商将网上找到的信息添加到现有的消费者文件中。尽管在与消费者沟通过程中不能这么做,但是它在数据建模过程中的使用仍能帮助品牌所有者更好地理解消费者行为。
媒体的进一步瓦解意味着监视消费者情绪和兴趣爱好将变得越来越难。再一次,弱人工智能将成为问题的答案。它可能是一项非常简单的技术,但如果被使用正确,它将能基于对大量信息的搜索迅速创造洞察视野。