资深编辑:为什么我们应该杀死“大数据”?

大数据1年前 (2023)发布 aixure
55 0 0
导读:本文作者Leena Rao,为TechCrunch资深编辑。大数据在今年是很火的一个概念,这个概念不同的人有不同的见解。然而我们对大数据的关注是不是有点偏离了正常的轨道呢?现在许多的讨论都是围绕着大数据这个词来展开,人们似乎忘记了大数据是要为我们解决实际问题…

本文作者Leena Rao,为TechCrunch资深编辑。大数据在今年是很火的一个概念,这个概念不同的人有不同的见解。然而我们对大数据的关注是不是有点偏离了正常的轨道呢?现在许多的讨论都是围绕着“大数据”这个词来展开,人们似乎忘记了大数据是要为我们解决实际问题的,我们更应该讨论贴近实用的方面。

老实说我以前是一个经常滥用大数据这个词的人,似乎每一个新成立的企业都与大数据有关,就连风险投资公司也更愿意投资关于大数据的公司。

为什么我现在越来越不喜欢“大数据”这个词了?因为我认为这个词条本身是落伍的,它的定义由一系列的单词构成,但这些单词并没有正确的反映了目前数据界发生了什么。现在,我们应该考虑的不是“大数据”,而是应该想一想我们能用数据做些什么。这些与运用分层数据创建的应用有关,也与这些应用能体现的深层意义有关。我不是第一个对大数据的夸夸其谈感到厌烦的人,我与大量的投资者、数据专家以及企业家聊过,很多人与我有同样的感受。

根据Vincent Mcburney的说法,“大数据”一词起源于宾夕法尼亚大学的Francis Diebold,他在2000年7月写的一篇关于金融建模的文章中首度提及此词。从那时到现在已经超过了10年的时间,在此期间关于人们该如何运用大数据,发生了太多的事情。

大数据不仅仅只与大企业有关。事实上任何一个公司,从Facebook、 Twitter这种巨人公司到Cloudera、Box、Okta这种快速发展的创业公司都是大数据公司,依照大数据的定义来看。每个有着一定用户规模的公司都在搜集大量的数据,也就是“大数据”。在一个数据是产品创新关键的世界,成为一个“大数据”公司并不算什么独特的事,老实说一点都不能说明一个公司的具体状况。

根据IBM,大数据包括四个方面:数量、速度、多样化以及真实性。在这个充满了社交网络、电子商务以及企业数据存储的世界,这些因素在许多领域都有被应用到。大数据真的不能代表全部,既然我们有这么多不同的方法来筛选及使用这些大量数据的话。

© 版权声明

相关文章

暂无评论

暂无评论...