基于改进模拟退火算法的电网无功优化

1年前 (2023)发布 aixure
29 0 0
导读: 基于改进模拟退火算法的电网无功优化 贾德香1 唐国庆1 韩 净2 (1.东南大学电气工程系,南京210096; 2.马鞍山供电局,马鞍山243000) 摘 要: 无功运行优化问题的关键在于获得最优解或较好的次优解。传统的线性规化法和非线性规化法不能很好地处理整型变量…

基于改进模拟退火算法的电网无功优化

贾德香1 唐国庆1 韩 净2

(1.东南大学电气工程系,南京210096; 
2.马鞍山供电局,马鞍山243000)

  摘 要: 无功运行优化问题的关键在于获得最优解或较好的次优解。传统的线性规化法和非线性规化法不能很好地处理整型变量问题,而常规模拟退火算法(SA)的鲁棒性不高。结合高中压配电网的特点,本文对SA进行了改进:采用记忆指导搜索方法,并采用模式法修正局部最优解。数值对比试验表明,本方法是合理的和可行的,具有一定的实用意义。
  关键词: 无功优化;记忆搜索;模式法;改进模拟退火算法

REACTIVE POWER OPTIMIZATION OF POWER SYSTEM BASED ON MODIFIED 
SIMULATED ANNEALING ALGORITHM

Jia Dexiang1Tang Guoqing1Han Jing2

(1. Dept. of Electrical Engineering, Southeast University, Nanjing 210096; 
2. Maanshan Electric Power Supply Bureau, Maanshan 243000)

  Abstract: The key to the optimization of reactive power operation is to get optimum value or satisfying quasi optimum value. Traditional linear programming technique and non-linear programming technique can not deal with the problem of integer variable successfully, and the simulated annealing algorithm(SA) is not very robust. Allowing for the characteristics of high-medium voltage distribution system, the SA is modified as follows: using remembrance-guided search method, and modifying the quasi optimum value by pattern search. Numerical experiment demonstrates that, the above method is reasonable, feasible, and practical to some extent.
  Key words: reactive power optimization; remembrance-guided search; pattern search method; modified simulated annealing algorithm

0.引言
  无功运行优化(RPOP)问题一直受到人们的重视,因为我国的线损率历来居高不下。例如,2001年安徽省总发电量约为400亿千瓦·时,电网的实际统计线损率约为20%,即线损电量约为80亿千瓦·时,其中可变线损电量约为60亿千瓦·时[1]。农网损耗甚至高达28%[2]。网损的严重性由此可见一斑。在现有电网结构的基础上,通过合理调节无功潮流可以降低网损、提高电压质量和电网运行的经济性。无功运行优化问题是一个大规模非线性整数规划问题。其目标通常为网损最小,也有采用偏移量最小,控制设备调节量最小或操作设备次数最少等作为目标函数。其等约束条件一般为各节点功率平衡,不等约束条件包括节点电压、线路功率和各控制量调节范围的限制[3]。其算法主要有线性规划法,非线性规划法,混合整数规划法,动态规划法,人工智能法等,目前还没有一种方法能保证求出无功优化问题的最优解[4]。
  对于110KV-35KV高中压配电网,其调节无功潮流的主要手段是改变有载调压变压器的分接头位置和并联电容器的投切组数,这些控制变量一般为整型。传统的线性规划法和非线性规划法等先将这些整型控制量视为连续变量,待求出最优解后再取近似的整数值,误差较大;或者采用分支定界求解,计算时间过长。近年来,许多学者采用人工智能法求解RPOP问题。文献5采用遗传算法结合神经网络预算电网潮流,减少了大规模电网遗传算法的整体计算时间。文献6采用记忆指导的模拟退火方案,较好地实现了配电网电容器的三相分相优化投切问题。
  模拟退火法(Simulated Annealing,简称SA)具有随机寻优的特点,能较好地避免局部极值点的束缚。但是SA求解速度慢,鲁棒性不强。因此,本文采用改进模拟退火算法(ISA)求解RPOP问题。主要改进点如下:采用记忆指导搜索方法,加快了搜索速度;采用模式法局部寻优,增加了获得全局最优解的可能性。数值对比试验表明,上述改进方法是合理的和可行的。

1 数学模型
  高中压配电网无功运行优化的主要目的就是在满足各种约束条件下,通过改变有载调压变压器的分接头位置和并联电容器的投切组数,使有功网损最小。其数学模型为:
 

© 版权声明

相关文章

暂无评论

暂无评论...